在色谱分析中,如何选择最佳的色谱条件以实现最理想分离,是色谱工作者的重要工作,也是用计算机实现HPLC分析方法建立和优化的任务之一.以下是HPLC-固定相和流动相的选择。
固定相
将有机官能团通过化学反应共价键合到硅胶表面的游离羟基上而形成的固定相称为化学键合相。这类固定相的突出特点是耐溶剂冲洗,并且可以通过改变键合相有机官能团的类型来改变分离的选择性。
分离中等极性和极性较强的化合物可选择极性键合相。氰基键合相对双键异构体或含双键数不等的环状化合物的分离有较好的选择性。氨基键合相具有较强的氢键结合能力,对某些多官能团化合物如甾体、强心甙等有较好的分离能力;氨基键合相上的氨基能与糖类分子中的羟基产生选择性相互作用,故被广泛用于糖类的分析,但它不能用于分离羰基化合物,如甾酮、还原糖等,因为它们之间会发生反应生成Schiff 碱。二醇基键合相适用于分离有机酸、甾体和蛋白质。
分离非极性和极性较弱的化合物可选择非极性键合相。利用特殊的反相色谱技术,例如反相离子抑制技术和反相离子对色谱法等,非极性键合相也可用于分离离子型或可离子化的化合物。ODS(octadecyl silane)是应用最为广泛的非极性键合相,它对各种类型的化合物都有很强的适应能力。短链烷基键合相能用于极性化合物的分离,而苯基键合相适用于分离芳香化合物。
流动相
一个理想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征。
选好填料(固定相)后,强溶剂使溶质在填料表面的吸附减少,相应的容量因子k降低;而较弱的溶剂使溶质在填料表面吸附增加,相应的容量因子k升高。因此,k值是流动相组成的函数。塔板数N一般与流动相的粘度成反比。
选择流动相时应考虑以下几个方面:
①流动相应不改变填料的任何性质。低交联度的离子交换树脂和排阻色谱填料有时遇到某些有机相会溶胀或收缩,从而改变色谱柱填床的性质。碱性流动相不能用于硅胶柱系统。酸性流动相不能用于氧化铝、氧化镁等吸附剂的柱系统。
②纯度。色谱柱的寿命与大量流动相通过有关,特别是当溶剂所含杂质在柱上积累时。
③必须与检测器匹配。使用UV检测器时,所用流动相在检测波长下应没有吸收,或吸收很小。当使用示差折光检测器时,应选择折光系数与样品差别较大的溶剂作流动相,以提高灵敏度。
④粘度要低(应<2cp)。高粘度溶剂会影响溶质的扩散、传质,降低柱效,还会使柱压降增加,使分离时间延长。最好选择沸点在100℃以下的流动相。
⑤对样品的溶解度要适宜。如果溶解度欠佳,样品会在柱头沉淀,不但影响了纯化分离,且会使柱子恶化。
⑥样品易于回收。应选用挥发性溶剂。
在化学键合相色谱法中,溶剂的洗脱能力直接与它的极性相关。在正相色谱中,溶剂的强度随极性的增强而增加;在反相色谱中,溶剂的强度随极性的增强而减弱。
正相色谱的流动相通常采用烷烃加适量极性调整剂。
反相色谱的流动相通常以水作基础溶剂,再加入一定量的能与水互溶的极性调整剂,如甲醇、乙腈、四氢呋喃等。极性调整剂的性质及其所占比例对溶质的保留值和分离选择性有显著影响。一般情况下,甲醇-水系统已能满足多数样品的分离要求,且流动相粘度小、价格低,是反相色谱最常用的流动相。但Snyder则推荐采用乙腈-水系统做初始实验,因为与甲醇相比,乙腈的溶剂强度较高且粘度较小,并可满足在紫外185~205nm处检测的要求,因此,综合来看,乙腈-水系统要优于甲醇-水系统。
在分离含极性差别较大的多组分样品时,为了使各组分均有合适的k值并分离良好,也需采用梯度洗脱技术。
400-800-3875
li.qiu@spcctech.com
广东省东莞市寮步镇金兴路419号703室(鑫龙盛科产业孵化园A3栋7楼)
关注我们
关于谱标
产品导航
版权信息